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Head of Department, Computer Engineering

Assoc. Prof. Dr. Ebru Aydın Göl
Supervisor, Computer Engineering, METU

Assoc. Prof. Dr. Sinan Kalkan
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Emre Akbaş
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ABSTRACT

PEAK-AWARE TRAFFIC PREDICTION WITH DEEP LEARNING
MODELS AND A DRIVER SIMULATION METHOD WITH

PROBABILISTIC HYBRID AUTOMATON

Acun, Fatih
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ebru Aydın Göl

Co-Supervisor: Assoc. Prof. Dr. Sinan Kalkan

August 2022, 43 pages

Accurately predicting traffic is crucial due to its impact on urban life in many as-

pects. Several statistical methods, machine learning, and deep learning approaches

are applied to different traffic datasets. In general, traffic follows a stable behavior

except for the morning and evening peaks which span a small period in time. To con-

sider a prediction model to be accurate, it must demonstrate successful results during

peak hours. In this thesis, a novel distance to mean weighting technique is presented

that can be applied to any deep learning model by introducing a minor change in

the loss function. The method also makes it possible to evaluate the performance

of the models during peak hours in traffic. Traffic prediction is frequently used in

estimating travel times and energy consumption (battery or fuel). In this thesis, in

order to estimate both travel time and consumption, a driver simulation model based

on Probabilistic Hybrid Automata is developed. The simulator generates speed-time

data with respect to the given traffic and driver characteristics. The result is then used

to estimate the consumption using an electric vehicle simulator.
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ÖZ

DERİN ÖĞRENME MODELLERİ İLE YOĞUNLUK YÖNELİMLİ TRAFİK
TAHMİNİ VE OLASILIKSAL HİBRİT OTOMATA İLE BİR SÜRÜCÜ

SİMULASYON YÖNTEMİ

Acun, Fatih
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ebru Aydın Göl

Ortak Tez Yöneticisi: Doç. Dr. Sinan Kalkan

Ağustos 2022, 43 sayfa

Trafiği doğru bir şekilde tahmin etmek, birçok yönden kentsel yaşam üzerindeki et-

kisi nedeniyle önem arz etmektedir. Farklı trafik veri kümelerinde çeşitli istatistik-

sel yöntemler, makine öğrenimi ve derin öğrenme yaklaşımları uygulanmıştır. Genel

olarak trafik, küçük bir zaman dilimine yayılan sabah ve akşam yoğunlukları dışında

sabit seyreden bir davranış sergiler. Bir tahmin modelini yüksek doğruluklu olarak

kabul etmek için yoğun saatlerde başarılı sonuçlar göstermesi gerekir. Bu tezde, ka-

yıp fonksiyonunda küçük bir değişiklik ekleyerek herhangi bir derin öğrenme mode-

line uygulanabilecek yeni bir ortalamaya uzaklık ağırlıklandırma tekniği sunuyoruz.

Yöntem, modellerin performansının yoğun saatlerde değerlendirilmesini de mümkün

kılmaktadır. Trafik tahmini, yolculukların seyahat sürelerinin kestirimi ve araçların

enerji (batarya ya da yakıt) tüketimlerini kestirmek amacıyla sıklıkla kullanılmakta-

dır. Bu tez kapsamında, seyahat süreleri ve yakıt tüketimini tahmin etme amacıyla

Olasılıksal Hibrit Otomata tabanlı bir sürücü simülasyon modeli geliştirilmiştir. Bu

simülatör, girdi olarak verilen trafik hızı ve sürücü özelliklerine göre hız-zaman ve-

vii



risini çıktı olarak üretir. Sonrasında bu çıktı elektrikli araç simulatöründe tüketimin

kestirilmesi amacıyla kullanılır.

Anahtar Kelimeler: trafik tahmini, derin öğrenme, sürücü modelleme, olasılıksal hib-

rit otomata
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CHAPTER 1

INTRODUCTION

Due to the increase in urbanization around the world, the problem of heavy traffic is

becoming more critical in the last decades. Crowded cities are suffering from a vari-

ety of complications such as air and noise pollution due to high traffic loads. Local

authorities and governments are taking actions to manage and attenuate the adverse

effects of traffic. Besides its macro-scale effects, trip planning is getting essential

for better time management and minimizing energy/fuel consumption for individual

drivers. In addition to the aforementioned stakeholders, researchers also paid atten-

tion to this problem. In particular, computer science and related fields have found

many research and engineering problems in the traffic domain, such as forecasting

and simulating the traffic, driver characterization and modeling, autonomous driving,

trip planning, and optimization.

Traffic information can be collected via different methods. Some traffic networks are

equipped with loop detectors [3] that measure various metrics, and the collected data

can be represented as density, flow, and average speed of traffic after preprocessing the

raw measurements. Other than loop detectors, GPS data retrieved from a sufficiently

large set of vehicles can be aggregated to macro-level traffic information such as

average speed, flow, and density. Having the historical data in a processed form

allows researchers to work on the problems such as traffic forecasting. In literature,

various prediction methods are suggested to perform long and short-term predictions

with a horizon from 30 minutes to a week. However, accurate predictions for peak

hours in traffic are not addressed by the studies. In this thesis, we propose a novel

peak-aware traffic prediction method specialized for accurate forecasts during peak

hours in short-term predictions. Also, we developed statistical models to be able to

1



make predictions in long-term periods.

Modeling individual drivers is another problem addressed in the traffic domain. De-

veloping models that simulate drivers has challenges, such as representing the aggres-

siveness levels of drivers and covering the stochasticity due to the environment and

the driver. Successful driver models are helpful for predicting energy consumption

and estimating the arrival time of trips. The state of the traffic along a trip is highly

decisive on a driver’s driving boundaries. This relevance makes it inevitable to utilize

traffic prediction within driver simulation models. In this thesis, we introduce a driver

simulation model by considering the aggressiveness level of the driver and environ-

mental conditions such as traffic speed and road types. The proposed driver simulator

allows us to investigate the effect of traffic on the energy consumption of individual

drivers.

We use our traffic prediction model and driver simulator to estimate the battery con-

sumption of an electric vehicle (EV) in an interdisciplinary research project titled

"Modeling of Electric Vehicle Battery Use for Micro Grid Applications and Esti-

mating the Energy Requirement." The project is funded by the Research Council of

Turkey (TUBİTAK), and conducted in cooperation with the Electrical and Electronics

Engineering and the Civil Engineering Departments at Middle East Technical Univer-

sity. In the scope of the project, it is aimed to integrate the EV into a Vehicle to Grid

(V2G) system of a micro-grid and allow the drivers effectively plan the battery con-

sumption, sharing, and charging process. Figure 1.1 illustrates the components of the

project.

1.1 Related Work

1.1.1 Traffic Prediction

Traffic prediction problem is considered one of the major time series prediction tasks.

Initially, statistical prediction approaches are applied to this task. Historical average

(HA), Auto Regressive Moving Average (ARIMA), and Kalman Filter are known to

be the first models applied on traffic data and reveals successful results compared to

2
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their simple nature [4], [5], [6].

Due to the nonlinear characteritics of the traffic data, machine learning models with

higher capacity are found to be suitable. Support Vector Regression model is used

to predict travel time in Tapei, Taiwan [7]. Feng et al. [8] make use of Adaptive

Multi-Kernel Support Vector Machines by modelling a system that accouts for spatial-

temporal correlation information and perform short-term predictions on traffic flow

data. Zhang et al. [9] propoese a K-nearest Neighbor nonparametric regression model

for short term prediction in Shangai. Various applications with variants of Artificial

Neural Networks on traffic data have been studied by researchers [10], [11], [12].

Variety of deep learning approaches are applied to traffic prediction problem since the

traffic data shows complex spatial and temporal characteristics which can be adressed

by deep learning architectures. One of the earliest applications by Lv et al. [13]

use stacked auto encoders to predict traffic flow on the traffic data collected from the

Caltrans Performance Measurement System (PeMS). Convolutional Neural Networks

(CNN) are used in traffic prediction due to their ability to capture spatial dependen-

cies. [14] converts the traffic data to image format and uses CNN’s to perform traffic

prediction. Another study with CNNs improves the performance by using additional

short and long term temporal features to represent periodicity [15]. Recurrent models

and their variants such as Long-Short Term Memory (LSTM) and Gated Recurring

Unit (GRU) are applied to the traffic data to capture the temporal behaviour. Tian et

al. [16] use LSTM to perform short term traffic prediction on well-known PeMS data.

Fu et al. [17] apply GRU for the first time for traffic flow prediction and compares

the results with LSTM and ARIMA models.

Recently, hybrid approaches that aim to capture spatio-temporal dynamics by com-

bining convolutional and recurrent models have become common. An hybrid archi-

tecture named Spatio-Temporal Dynamic Network (STDN) that focuses on the dy-

namic spatial dependencies and shiftings in temporal periodicity is proposed in [18].

Zonoozi et al. [19] propose Periodic Convolutional Recurrent Network that is based

on the Convolutional GRU and uses periodic representation dictionaries to represent

the multiple periodic patterns in traffic data.

CNNs capability is proved on grid structures such as images but traffic networks form

4



a graph structure and converting those to grid-like inputs causes an information loss.

In order to overcome this difficulty, Graph Neural Networks (GNN) are used to rep-

resent the traffic networks using the connectivity information of road segments. A

comprehensive survey of GNNs application on the traffic prediction problem is done

by Jiang and Luo [20]. The survey includes variety of datasets and methods. Yu et

al. [21] use spatial graph convolution with temporal gated convolution and propose

a stacked architecture of spatio-temporal blocks. Another spatio-temporal deep ar-

chitecture with graph convolution and GRU is proposed in [1] and this architecuture

is extended by introducing attention mechanism at [22] to give more importance on

different time points. A novel graph convolution method called Traffic Graph Convo-

lution (TGC) is proposed by Cui et al. [23]. TGC is based on a free-flow reachable

matrix. The authors combined TGC with LSTM in their final model.

Latest research incorporates Generative Adversarial Networks (GANs) for traffic pre-

diction. In their study, Jin et al. utilize Wasserstein Generative Adversarial Nets for

modelling road link features and use it together with RNN and graph convolution

[24].

1.1.2 Modeling the Driver Behavior

Driver behavior modeling is needed for the scenarios such as lane changing, intersec-

tion decision making, driver profiling, and router choice modeling. The demand for

the development of behavior models for drivers applied to different disciplines such

as energy efficiency and driver assistance systems [25].

In their work, Schwarze et al. [26] propose a hybrid automata model to simulate

different behaviors of drivers for a merge to the highway from an on-ramp junction.

They designed an automaton for this scenario. The states the automaton represent

different stages of the merging event and the authors optimized different pre-defined

functions for each stage.

Several studies for vehicle speed prediction on a given route rely on non-parametric

data-driven models. In [27], the authors provide a deep learning model called Neuro-

Fuzzy Inference System. They trained different models based on driver classes such

5



as conservative and aggressive. They also considered road geometry and weather con-

ditions as input to their model. Another data-driven study proposes Hidden Markov

Models to present the statistical relationship between individual vehicle speeds and

traffic speed [28]. They’ve used 3000 vehicle traces to train and 2000 traces to test

their model. Making short term predictions of vehicle speed is also studied in the

literature to optimize the energy consumption and power management of vehicles.

Özgüner et al. [29] introduce a lightweight and fast short term vehicle speed predic-

tion method using Auto Regression and Markov models.

The problem of driver modeling fits in the Markov Decision Process framework in

which an agent takes actions at discrete time steps based on the state of the environ-

ment. There are some studies in the Reinforcement Learning field for driver mod-

eling. Bacchiani et al. [30] use the Deep reinforcement learning algorithm Asyn-

chronous Advantage Actor-Critic with a reasonable reward shaping that manipulates

the resulting behavior of the driver under the scenario of entering a roundabout.

1.2 Motivation and Problem Definition

1.2.1 Traffic Prediction

Various traffic datasets from different locations in the world represent similar charac-

teristics, such as specific peak periods that occur one or two times a day. Those peaks

in traffic allocate a small period in time, and this introduces a data imbalance prob-

lem. Apart from the limited peak hour intervals, traffic in most of the road segments

stays steady around its free flow speed. Figure 1.2 shows one-day traffic speed data

between 06:00 and 22:00 from a road segment in Ankara, Turkey. The evening peak

is observed for a 2 hours interval. The daily data is 16 hours in total and the peak

period corresponds to only 12.5% of it. Due to this imbalance problem in the traffic

data, prediction models seem to reveal successful results even though the predicted

speeds are not close to the actual ones during peak hours. Table 1.1 shows the peak

performance, and overall performance results of the Temporal Graph Convolutional

Network (TGCN) [1] trained with the traffic dataset of Ankara, Turkey. It is seen that

the errors during peak hours are much higher than the overall results. To the best of
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our knowledge, current traffic prediction models are not specialized for accurate pre-

dictions for peak hours in traffic. However, peak predictions are extremely important

and must be accounted for specially. Our method, distance to mean weighting, can

be applied to the loss function of deep models, and it dynamically changes the value

of the loss in peak hours and introduces more penalty for the prediction errors during

these periods.
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Figure 1.2: Imbalance problem in traffic data. One day traffic data is presented from

a road segment. The peak period that occupies 12.5% of the day is highlighted with

yellow.

Table 1.1: Results for the predictions of TGCN [1] in Ankara Dataset. "(·)p", stands

for the errors during peak hours. There is a significant difference observed between

the peak performance and overall performance.

Overall Performance Peak Performance

Model MAE ↓ RMSE ↓ MAEp ↓ RMSEp ↓

TGCN 4.9695 7.6333 28.3449 29.8887

1.2.2 Modeling the Driver Behavior

Driving simulation along a trip requires considering the driver behavior and environ-

mental conditions that affect driving. Driver’s travel speed, average traffic speed on

the road, and the type of roads (highway, street, etc.) are some of the factors that play

role on the acceleration/deceleration actions of drivers. Our approach produces the

7



expected behavior as a time series speed data along a path. We use Probabilistic Hy-

brid Automaton to model the continuous and discrete dynamics of the driver and the

environment. We represent driver speed as a continuous state and embed the discrete

dynamics to the state space of the automaton that represents different acceleration/de-

celeration actions. To fit the probabilistic transitions between acceleration states, we

used historical driving data that belongs to different driver classes.

1.3 Contributions

In the scope of this thesis, we propose novel methods for traffic prediction and driver

simulation. Our contributions are as follows:

• Accurate traffic predictions for peak hours with distance to mean weighting to

the loss function of deep learning models

• Peak aware traffic prediction in large scale traffic network of Ankara, Turkey

• Data driven driver simulation with Probabilistic Hybrid Automaton

Our study titled "Traffic Prediction with Peak-Aware Temporal Graph Convolutional

Networks" was published at the conference 30th Signal Processing and Communica-

tions Applications (SIU).

1.4 The Outline of the Thesis

The outline of the thesis is as follows. In Chapter 2, we present the details of Dis-

tance to Mean Weighting method for peak aware traffic prediction with deep learning

models. In Chapter 3, we introduce our driver simulation method with Probabilistic

Hybrid Automaton. Finally, we discuss the conclusions of this study in Chapter 4.
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CHAPTER 2

PEAK-AWARE TRAFFIC PREDICTION WITH DISTANCE-TO-MEAN

WEIGHTING FOR DEEP LEARNING MODELS

Having accurate predictions for traffic is critical for trip planning and traffic man-

agement systems for stakeholders to make micro- and macro-level decisions. In par-

ticular, peaks in traffic cause undesirable transportation delays and excessive energy

consumption for vehicles. Therefore, developing successful models that are excep-

tionally accurate during peak hours is vital.

Traffic data is represented with different metrics such as density, average speed, and

flow. Those metrics define the traffic state from different modeling perspectives and

demonstrate both divergent and similar characteristics from case to case. The associ-

ation between those metrics is investigated by various studies that originate from the

fundamental relation of Greenshield [2], who is considered as the founder of traffic

flow theory. Figure 2.1 shows the relations of traffic information metrics in different

planes [31].

fl

fl

fl

fi fi fi

fi

fl

fi fl

Figure 2.1: Fundamental relations of traffic in different planes. The relation between

the traffic information metrics is demonstrated with respect to each other. Figure

source: [2]

Traffic data consists of univariate time series with one of the metrics above. This

9



series data shows certain characteristics such as seasonalities in daily and weekly pe-

riods, peaks in certain intervals, and unusual anomalies. Thus the prediction problem

has a temporal aspect that shouldbe taken into account to make accurate predictions.

On the other hand, traffic networks consist of many road segments that are connected

to each other. This connectivity defines an implicit spatial correlation since traffic

flow strictly depends on the road infrastructure. Queue formations and congestion

propagations spread through road segments such that the neighbouring road segments

are affected stepwise. For this reason, there is a spatial dependence between the road

segments, and therefore, the models used for traffic prediction should capture the

spatial characteristics of traffic data. Figure 2.2 and Figure 2.3 show how the traffic

congestion propagates between segments close to each other in a 40 minutes period,

in Söğütözü, Ankara.

One of the most important problems in traffic prediction is making predictions with

high accuracy during peak periods. Since peaks span a small period in time compared

to off-peak periods, an imbalance problem occurs in data as we illustrated in Figure

1.2, in Chapter 1. Also, error metrics that are calculated over the whole dataset are

not reliable due to the mentioned imbalance problem. In this study, we’ve used a

spatio-temporal deep learning model specialized for traffic prediction named Tempo-

ral Graph Convolutional Network (TGCN), proposed by Zhao et al. [1]. We introduce

a Peak-Aware TGCN (pTGCN) model by proposing an extension on the loss func-

tion. We apply distance to mean weighting to the loss function so that the loss is

dynamically increased during peak hours. Correspondingly, the prediction accuracy

is enhanced during peaks.

2.1 Background Information and Problem Definition

2.1.1 Traffic Prediction Problem

Traffic networks can be considered as a graph data structure. We define a graph over

the traffic network G = (V,E) such that V is the set of road segments and E is the set

of connections between road segments. In particular, each vertice is considered as a

road segment such that V = {v1, v2, ..., vN}, where N is the number of road segments

10
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Figure 2.2: Spatial dependence of nearby road segments. Congestion propogation is

observed in a 40 minutes period.

in the traffic network. Figure 2.4 demonstrates the representation of an example traffic

network as a graph. In our study, we interpret the traffic data over the graph G as the
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Figure 2.3: Traffic speeds of nearby road segments. Upstream, midstream and down-

stream road segments are labeled with UP, MID and DOWN in Figure 2.2. The peaks

occur with lags in time in order with their spatial position.

time series data of average speed values for each vertice. Therefore, the data matrix

is XN×L, where N is the number of road segments, and L is the length of the time

series data.

Let Xt =< v1, v2, ..., vN > be a vector that represents the state of the network as av-

erage speed values for all road segments at time t. Traffic prediction problem at time t

is described as forecasting the future steps (Xt+1, ..., Xt+h) with a prediction horizon

of h, using the input data (Xt, Xt−1, ..., Xt−s) of past time steps with a window of

length s. Then, we define the traffic prediction problem with the function f that maps

the input to the output with the weight parameters θ as follows:

Xt+h, . . . , Xt+2, Xt+1 = f(Xt, Xt−1, . . . , Xt−s; θ). (2.1)

2.1.2 Graph Convolutional Networks

Convolutional Neural Networks (CNNs) are one of the most popular deep learning

architectures and are applied to grid-structured data such as images. However, data

on a graph has irregularities and is not structured enough compared to grid-like data

or any other data represented in a rectangular form. To address this problem, graph

convolution is proposed, which is an extension of CNNs on graphs. There exists var-

ious methods, such as Graph Convolutional Networks (GCN) [32], Graph Attention

12



(a) Traffic Network

(b) Graph Representation

Figure 2.4: An example representation of roads for a small portion of a traffic network

in 2.4a as a graph in 2.4b. Road segments shown in red lines are represented as the

nodes of the graph. The connection between the road segments are demonstrated with

the edges of the graph.

Networks (GAT) [33], Graph Sample and Aggregate (GraphSAGE) [34], and Graph

Isomorphism Network (GIN) [35] that implement graph convolution with different

approaches. In this study, we use GCNs to apply to the traffic data. GCN model is

defined as stacked convolutional layers of the following:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)θ(l)), (2.2)
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where Ã is the adjacency matrix with self connections, D̃ is the degree matrix, H(l)

is the output of the layer l, θ(l) is weights of layer l, and σ is the activation function

sigmoid.

2.1.3 Recurrent Neural Networks

To capture the temporal dependencencies in the time series data, Recurrent Neural

Network (RNN) architectures are utilized. Due to the problem of gradient vanishing

in RNNs, Long Short Term Memory (LSTM) [36] and its variants, e.g. Gated Recur-

rent Units (GRU) [37], are preferred. Gated mechanisms in LSTM and GRU allow

to memorize long-term information and reveal more successful results than vanilla

RNNs. In our study, GRU is preferred to model temporal dependencies in traffic data

due to its advantage of shorter training time compared to LSTM. The GRU model

consists of reset and update gates and a candidate hidden state to decide which infor-

mation is to be kept or forgotten. GRU is defined as follows [38]:

ut = σ(XtWxu +Ht−1Whu + bu), (2.3)

rt = σ(XtWxr +Ht−1Whr + br), (2.4)

ct = tanh(XtWxc + (rt Ht−1)Whc + bc), (2.5)

ht = ut Ht−1 + (1− ut) ct, (2.6)

where ut and rT are the update and reset gates, ct is the candidate hidden state and ht

is the hidden state. W represents the weight parameters, b represents the bias terms.

σ is the sigmoid activation function and is the elementwise multiplication operator.

2.1.4 Temporal Graph Convolutional Network (TGCN)

TGCN [1] is a spatio-temporal deep neural network that consists of GRU and GCN

models. In the architecture, the data over the traffic network graph at time t is given

as input to the 2 layers of GCN defined as follows:

f(X,A) = σ(ÂReLU(ÂXW0)W1), (2.7)

where X is the input, A is the adjacency matrix, Â is the preprocessing step such that

Â = D̃− 1
2 ÃD̃− 1

2 , W is the weight matrix, ReLU is the Rectified Linear Unit [39]
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activation function. The output of this 2 layer GCN is then fed to the recurrent model

built with GRUs. Figure 2.5 illustrates the model architecture.

Figure 2.5: TGCN model architecture [1]. The utilization of Graph Convolution (GC)

and GRU are illustrated. Figure source: [1]

2.2 Temporal Embedding

Peaks occur at certain time intervals in traffic. The day of the week, hour, and minute

are specific indicators of dense traffic periods, and similar traffic behavior seasonally

repeats itself. Therefore, we use time information as an additional feature along with

the univariate time series data to address this dependence on the time and represent

the seasonal characteristics in the traffic data. The indices of day, hour, and minute

are processed with periodic sine and cosine functions as follows to encode the time

data;

ϕsin = sin

(
2π × ti ×

1

l

)
, (2.8)

ϕcos = cos

(
2π × ti ×

1

l

)
, (2.9)

where ti is the timestep index, l denotes the period. Figure 2.6 shows one week

normalized train data versus the generated temporal features for consequent days such

that distinct days are represented with unique sine-cosine pairs.
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Figure 2.6: Temporal features generated for day indices. One week traffic data is

shown in correspondance with the sine and cosine encodings of temporal information.

2.3 Distance-to-Mean Weighting for Improved Peak Prediction

Making accurate predictions for peak hours in traffic is crucial for prediction models.

During the whole day, except for the morning and evening peak hours, the traffic

speed for a road segment is mostly around its free-flow speed, that is, the average

speed of the cars when the traffic flow rate is low to moderate [40]. Therefore, a data

imbalance problem occurs as we illustrated in Figure 1.2 in Chapter 1, and models

tend to learn the mean of traffic speed corresponding to the free-flow speed.

We mitigate this behavior by giving more importance to peak hours by multiplying the

loss with distance-to-mean (DTM) weights that have higher values when the absolute

distance of the traffic speed to its mean is high. We integrate the distance to mean

weight matrix wDTM
i to the loss function as follows:

L =
1

h×N

h∑
i=1

wDTM
i (ŷi − yi)

2, (2.10)
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and we define wDTM
i as follows:

wDTM
i = λ

(
δ +

|yi − µs|
ymax

)τ

, (2.11)

where yi is the target for prediction step i, and µs is the mean speed for the corre-

sponding road segment, and ymax is the maximum traffic speed value for the train

dataset. The parameters λ, δ, and τ are scale, shift, and exponential factors, respec-

tively. By introducing these parameters, we analyze the different forms of DTM

function and have better control over the loss function. Figure 2.7 shows three differ-

ent configurations of DTM parameters and presents the effect of different values for

the exponential factor τ .
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Figure 2.7: DTM parameter analysis. Values of wDTM is shown with respect to |yi−µs|
ymax

with the different settings of DTM parameters λ, δ, and τ .

2.4 Experimental Setup

2.4.1 Datasets

2.4.1.1 Ankara Dataset

The dataset spans five weeks of average speed data in Ankara, Turkey, from August 24

to September 27, 2020. Data is collected for each minute from a large-scaled traffic

network that consists of 6646 road segments having a length of 255 kilometers in

total. We used linear interpolation to fill the missing values and aggregated the traffic

17



data into 5-minute intervals by taking the average. Also, we filtered out the data

between hours 22 and 6 since the traffic speed is simply constant at night and out of

interest to perform predictions. In addition, we constructed a 6646×6646 adjacency

matrix to represent the connections between the road segments. Highlighted parts in

Figure 2.8 show the aforementioned traffic network. We reserved the last week of

5-week length Ankara dataset for the test set and separated the remaining 4 weeks to

train, and validation splits with 80% and 20% ratio, respectively.

Figure 2.8: Traffic network of Ankara.

2.4.1.2 Los-loop Dataset

This dataset consists of average speed values in 5-min aggregates collected from the

highway of Los Angeles County between March 1 to March 7, 2012. The data is

collected from loop detectors at 207 points. In comparison to the Ankara dataset,

this dataset is smaller in terms of its network size and time length. This dataset is

provided in [1]. The dataset is splitted to train and test with a percentage of 80% and

20%, respectively.
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2.4.2 Implementation and Training Details

To observe the impact of DTM weights in training, we’ve used the same configu-

rations with the baseline method TGCN. The implementation by the authors can be

found at ( https://github.com/lehaifeng/T-GCN/). In their experimental setup, they set

the learning rate to 0.001, the batch size to 32, and the number of hidden units to 64.

They’ve trained their models for 5000 epochs. In order to observe the isolated impact

of the DTM weights on the prediction accuracy, we’ve kept the parameter settings the

same with TGCN. However, we’ve run experiments for learning rate tuning since we

introduce a change in the loss function of the model. We set the prediction horizon to

30 minutes and the historical window to 1 hour for all experiment configurations.

2.5 Experiments

2.5.1 Experiment 1: Analysis with a Large-scale Dataset (Ankara Dataset)

Analysis of DTM values is the first stage of the experiments to verify and consolidate

our hypothesis. We expect DTM weights to have higher values during peak hours to

magnify the loss for those periods. Figure 2.9 shows the daily data from one road

segment. During the evening peak, it is observed that values of DTM are higher

compared to off-peak hours. Further analysis of DTM values over the train dataset

of the whole traffic network is demonstrated in Figure 2.10. The histogram shows

that DTM values are accumulated between 0-0.1 since the traffic data is close to its

mean in most examples of the dataset. In other words, there is a significant imbalance

between on-peak and off-peak samples.

The hyperparameter tuning experiments consist of tuning the learning rate for the base

model TGCN and our method Peak-Aware TGCN (pTGCN) with the DTM extension.

To see the isolated effect of DTM in the results, we’ve kept other parameters the

same with the TGCN’s configuration. The scale, shift and exponential parameters

for DTM are set to λ = 1, δ = 0, and τ = 1. This setting of DTM parameters

acts as a unit function since it does not change the value of normalized distance to

mean values, i.e. wDTM
i =

(
|yi−µs|
ymax

)
. For both models, results are presented for
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Figure 2.9: Distance to mean weights in the daily data of a road segment. Higher

values for DTM are observed during the peak hours.

the optimal learning rates. The pTGCN models used are trained for 1500 epochs

with a learning rate of 0.001, and the TGCN model is trained for 5000 steps with

a learning coefficient of 0.01. Table 2.1 shows the results for the baseline models

and our proposed method. The predictions of the deep learning models are compared

with the ARIMA models (total of 6646 models), which are trained separately for each

traffic segment, and the Historical Average (HA) models, which work by averaging

the data over the same time periods in the past. The reason why the weekly forecasts

of ARIMA and HA models are included in the study is that these models are more

successful in long-term forecasting. In the short-term predictions of deep learning

models, it is expected to outperform these long-term predictions. Consequently, the

peak performances indicate that our model has significantly improved the results of

the base model TGCN up to 14% and performs better than all the other models.

We calculated the peak errors "(·)p" by filtering the dataset based on the distance to

mean values such that wDTM ≥ 0.2, for λ = 1, δ = 0, and τ = 1. In consequence,

we presume that 0.2 is a threshold for an instance to be accepted as in the peak period

as also observed within Figure 2.9.
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Table 2.1: Results for the prediction models. "(·)p" stands for the errors during peak

hours.

Temporal Overall Performance Peak Performance

Model DTM Embedding MRE ↓ MAE ↓ RMSE ↓ MREp ↓ MAEp ↓ RMSEp ↓

ARIMA 0.1599 4.7513 7.6712 1.8467 28.6745 30.7418

HA 0.2664 6.7017 9.9407 2.0314 28.4094 31.3782

TGCN 0.1652 4.9695 7.6333 1.7887 28.3449 29.8887

✓ 0.1628 4.9550 7.6556 1.7908 28.5527 30.1190

✓ 0.2002 6.8128 8.9452 1.5531 24.4146 26.8029

pTGCN (Proposed Method) ✓ ✓ 0.2023 6.9218 9.0187 1.5432 24.2929 26.6907

In Figure 2.11, prediction results of different models for one road segment are visu-

alized for one day from test data. The predictions for the peak period between 16:30

and 18:30 show that our pTGCN model approximates the actual traffic speed more

precisely than the others. For the off-peak hours, it is observed that other models

perform better.

2.5.2 Experiment 2: Analysis with a Small-scale Dataset (Los-loop Dataset)

The Los-loop dataset, which is a small-scale dataset compared to the Ankara dataset,

is used in the experiments of the study TGCN [1]. In this section, we present our ex-

periments on the Los-loop dataset with DTM extension on the model. In this dataset,

our results for DTM can not outperform the TGCN model. However, our results are

promising and considered to be successful enough to be compared with the TGCN
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Figure 2.11: Prediction results for different models. It is shown that proposed method

pTGCN performs better during peak hours.

model. Different from the experiments for the Ankara dataset, we present an ablation

analysis for the parameters of DTM to outperform the TGCN model. For each experi-

ment setup with different settings of DTM parameters λ, δ, and τ , we’ve analyzed the

different forms of DTM function on the prediction accuracy. We present the results

for optimal learning rates in Table 2.2.

2.6 Discussion

Experiments in Ankara and Los-loop datasets with our proposed method pTGCN

show promising results. Especially in the Ankara dataset, we achieved a significant

improvement for the predictions during peak hours. However, the overall prediction

performance is decreased for the errors during off-peak hours. Although this is not a

critical problem, we think this can be addressed by training ensemble models to have

accurate predictions on both peak and off-peak hours. The other possible solution will

be optimizing the DTM funciton to have a balanced impact on the peak and off-peak
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Table 2.2: Results for the predictions of TGCN [1] in Los-loop Dataset. "(·)p" stands

for the errors during peak hours. λ, δ, and τ are the scale, shift and exponent param-

eters of DTM, respectively.

Model λ δ τ RMSE ↓ RMSEp ↓

TGCN - - - 6.4155 7.7491

pTGCN

1 0 0.5 7.5601 8.4070

1 0 1 7.5548 8.4661

1 0 2 7.5099 8.8513

1 1 0.5 7.4479 8.1078

1 1 1 7.1878 8.0554

1 1 2 7.5531 8.2798

10 0 0.5 7.5697 8.3853

10 0 1 7.5424 8.3322

10 0 2 7.1224 8.3157

10 1 0.5 7.5846 8.4863

10 1 1 7.2112 8.1337

10 1 2 7.1571 8.2823

hours.

For the Los-loop dataset, our method pTGCN has revealed results that are close to

the TGCN model. We presume this is encountered by the different characteristics

and size of the dataset. The sharpness, distribution, and importance of the peaks

over the datasets might differ. Further optimizations in pTGCN can be done after

analyzing and having more powerful insights into the different datasets.
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CHAPTER 3

A DRIVER MODELING AND SIMULATION APPROACH WITH

PROBABILISTIC HYBRID AUTOMATA

The impact of the traffic state on a driver is enormously high. Environmental con-

ditions such as heavy traffic and rainy weather introduce limitations and specific be-

havioral patterns in driving. In particular, a driver’s actions are highly affected by the

preceding driver in heavy traffic. This phenomenon is investigated in the literature

with the car following models [41]. On the other hand, driving style is more decisive

during off-peak hours. Aggressive drivers can drive at high speeds and/or make fre-

quent acceleration and deceleration actions, while coutious drivers prefer to cruise at

a constant speed with less bold moves.

One of the direct impacts of different driving practices is observed in the energy

consumption of a vehicle. Aggressive driving with frequent acceleration and deceler-

ation actions significantly increases consumption. On the contrary, cruising around at

a constant speed ensures energy saving. Therefore, accurate simulations that approx-

imate a driver’s actual driving empower predicting the energy consumption.

In this chapter, we propose a driver simulation method based on Probabilistic Hybrid

Automata (PHA). Our approach encapsulates the average traffic speed and road types

to model the effects of traffic on the trips. Furthermore, it fits the driving characteris-

tics from historical driving data to accurately emulate the driving behavior.
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3.1 Background

3.1.1 Probabilistic Hybrid Automaton

PHA [42] is a stochastic automaton model with continuous and discrete variables.

Continuous variables are stored in the locations (discrete states) of the PHA, and

their change in time is expressed with differential equations.

Probabilistic edges of PHA allow the implementation of stochastic events. The state

transitions are based on a probability distribution over the probabilistic edges. The

formal definition of PHA is given with a tuple as follows;

PHA = (Loc, Iinit, Act,X, flow, inv, prob, L), (3.1)

where;

• Loc is the finite set of locations (states)

• Iinit ∈ Loc× RX is the initial condition

• Act is a finite set of actions

• X is a finite set of continuos variables

• inv is the invariant condition, such that Loc → 2R
X

• flow is the flow condition, such that (Loc×RX) → RX

• prob is the probabilistic edge relation, such that

prob ⊆ Loc× 2R
X ×Dist(Loc× RX)

• L is the labeling function, Loc → AP , where AP is a set of atomic propositions

3.2 Driver Modeling and Simulation

In this section, we describe the utilization of the PHA model in the driver simulation

problem.
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The most critical metrics in the driving action are speed and acceleration. The change

of those continuous variables in time constitutes a trip from the start to the destination.

Using PHA, we store the speed of the driver as a continuous variable and acceleration

as a discrete variable.

Each location of the PHA represents traffic speed (s), road class (rc), driver speed

(v), and acceleration type (acc). In our traffic network, we have 3 different road

classes that represents the different road types of a scale from the motorway to the

roads with less capacity. In this study, we separated the traffic speed s and driver

speed v into discrete intervals. After the discretization of those variables, the number

of locations in the PHA is expressed as follows;

|Loc| = |s| ∗ |v| ∗ |rc| ∗ |acc|, (3.2)

where |s|, |v| denote the number of discrete intervals of s and v, respectively. |rc| is

the number of road classes and |acc| is the number of accleration types.

We map the locations of the PHA to the different acceleration types (acc) of drivers.

Acceleration types can be defined as a scale of Hard Acceleration (HA), Acceleration

(A), Cruising (C), Deceleration (D), and Hard Deceleration (HD). These acceleration

types are built in a finer discretization in different experimental setups as follows;

acc = {acc0, acc1, acc2, ..., accn}, (3.3)

where acc0 and accn refer to HD and HA, respectively, and the others are the inter-

mediate steps of acceleration types, such that accn/2 refers to C. At time t, the PHA

model calculates the values of acceleration and speed of the vehicle at t+1, depending

on location of the PHA that stands for the current acceleration type.

The deterministic transitions between the locations of the automaton are controlled

based on the invariants of traffic speed (s), driver speed (v), and road class (rc). s is

the average speed of the traffic, v is the speed of the ego vehicle, and rc is the type

of road. Those criteria directly influnce the acceleration characteristic and introduce

limitations on a vehicle. To illustrate, it is not physically possible to perform HA

when the driver speed v is high. Figure 3.1 demonstrates a slice from the state space

of the PHA.
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Figure 3.1: Visual illustration of a slice of the PHA. (For simplicity, probabilistic

transitions outgoing from only one location are visualized)

The probabilistic transition of the PHA is defined with the function P as follows;

p = P (acc′|s, v, rc, acc), (3.4)

such that p is the probability of the successor acceleration state (acc′), given the

(s, v, rc, acc) tuple. The probability distributions for probabilistic edges are calcu-

lated using the sample observations in the driving dataset. The transition instances

observed in the dataset are counted and normalized into the range of [0, 1] to represent

the probability distribution from one acceleration state to others. We store a vector

for the probabilistic edge from each location. Stacking those vectors for the different

values the invariants, in total, builds a 5D transition matrix with dimensions defined

by (s, v, rc, acc, acc′). The transition matrix stores the probabilities of a transition for

any given source-target acceleration states. Figure 3.2 shows a transition probability

matrix from the source to destination acceleration states with given (s, v, rc).

3.3 Dataset Description

The driving dataset is GPS track data of trips in Ankara, Turkey. Those trips are

anonymous and have no driver information. The attributes of the data are latitude,

longitude, speed, and timestamp logged at irregular frequencies by vehicles. The

frequency of data varies in different trips and also may change along one trip.
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0.005 0.0082 0.88 0.029 0.038 0.022 0.0097 0.0028 0.002

0.0027 0.0029 0.0097 0.91 0.045 0.02 0.0059 0.0018 0.0009

0.0014 0.0014 0.0065 0.022 0.94 0.02 0.0054 0.0013 0.0007

0.0011 0.0016 0.0056 0.018 0.052 0.91 0.01 0.0019 0.0014

0.0016 0.002 0.0086 0.017 0.043 0.035 0.88 0.0054 0.0032

0.0017 0.0028 0.0073 0.012 0.022 0.034 0.025 0.89 0.0059

0.0029 0.0018 0.0088 0.013 0.029 0.035 0.03 0.024 0.86
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0.4
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Figure 3.2: Sample transition probability matrix with given (s, v, rc). Matrix shows

the transition probabilities from the source to destination acceleration type.

3.3.1 Data Preprocessing

We applied preprocessing steps to standardize the dataset and eliminate the spatial

noise in GPS points. Firstly, to align the noisy points that are spread around 5-10 me-

ters off from the roads, we applied an HMM-based map matching algorithm imple-

mented by Open Source Routing Machine [43]. After this map matching operation,

we achieved to fetch the related traffic speed of road segments that the GPS point is

inside, based on time and location information.

Due to the missing GPS points in the trips and GPS loggers with varying irregular

frequencies, the data need to be standardized along the time dimension. In order

to have a standardized dataset with a GPS point every second, we applied a linear

interpolation on the trips’ path to fill the missing parts.
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In addition to these preprocessing steps, we filtered out the too short and less reliable

trips with a low percentage of GPS points. After having the data in a cleaned form, it

is feasible to match the GPS points with the traffic data of the road segments. Using

the timestamp and matched road segment information, we unified the traffic average

speed data and GPS track data to be used in the PHA model. Finally, we have 58,091

trips after all preprocessing steps. In total, this corresponds to a 421 days length

driving data.

3.4 Experiments

In this section, we use a driver classification model and EV model integrated with our

PHA model. Those models are developed by İven Güzel and Berkay Sağlam from

METU Electrical and Electronics Engineering department, under the supervision of

Assoc. Prof. Murat Göl as a part of the TUBİTAK project mentioned in Chapter

1. Figure 1.1 explains the relation between those models and our PHA based driver

simulation model. The driver classification model classifies the trips in our dataset in

terms of their driving chracteristics. The EV model calculates the battery consump-

tion of the electric vehicle for a trip, given the speed as time series input.

We implement the PHA model using PRISM model checker [44]. PRISM is a proba-

bilistic model checking tool for formal modelling and analysis of systems that demon-

strates random or stochastic characteristics. We build a PHA model for each driver

class obtained by the driver classification model to distinguish between different

driver characteristics in our simulations. The classification model identifies 6 dif-

ferent driver classes in our dataset. Therefore, we develop 6 different PHA models

for those classes. We also split the dataset to train, validation, and test splits for each

of those classes with the percentages of 70%, 15%, and 15%, respectively.

We divide the traffic speed into 5 intervals. The traffic speeds over 80 km/h are

considered to be in the same discretization level as it indicates the free flow speed.
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The discretization is defined by the following function D;

D(s) =



s0, s < 20

s1, 20 ≤ s < 40

s2, 40 ≤ s < 60

s3, 60 ≤ s < 80

s4, 80 ≤ s

(3.5)

The driver speed (v) is discretized into the 7 intervals defined by the function D as

follows;

D(v) =



v0, v < 20

v1, 20 ≤ v < 40

v2, 40 ≤ v < 60

v3, 60 ≤ v < 80

v4, 80 ≤ v < 100

v5, 100 ≤ v < 120

v6, 120 ≤ v

(3.6)

where, vi indicates the discretization level.

We apply two different discretization setup on the acceleration types. We present ex-

periments with the number of acceleration types 5 and 9 to see the effect of having

finer discretizations of the acceleration on the simulations. Those set of accelerations

are referred as accf , and accc in our experiment setups, that represent the fine and

coarse sets of acceleration types, such that |accf | = 9, and |accc| = 5. The accelera-

tion values (m/s) for those sets are as follows;

accc = {−2,−1, 0, 1, 2}, (3.7)

accf = {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}. (3.8)

Our model outputs a speed data versus time and the resulting simulation is not neces-

sarily to be the same length with the original trip. Depending on the driving speed, the

duration of the simulation can vary and might be longer or shorther than the trip. This

prevents to use error metrics that compare the simulation results with the original data
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as a one-to-one correspondance. Since we aim to approximate the energy consump-

tion of the trip at the final step such an error metric is not informative. Therefore,

we use a histogram distance metrics based on the acceleration histograms of trips

and simulations to evaluate our model on the acceleration values of the simulation

and trips. We use Earth Mover’s Distance (EMD) [45] and and the Normalized His-

togram Distance (NHD) to compare trip and simulation acceleration histograms. We

define NHD as follows;

NHD = Σi|ht
i − hs

i |, (3.9)

where ht and hs are the normalized histograms of acceleration values in the actual trip

and simulation respectively. We normalize the histograms to make our error metrics

independent from the length of the trips.

We present the results for the experiments with accf , and accc settings using the NHC,

EMD error metrics. We also provide metrics considering the error in the energy

consumption of the trips. We specify Mean Absolute Error (MAE), which is the

absolute difference between the trip and simulation energy consumption values in

kWh per 1 km. The last error metric Capacity Percentage Error (CPE) represents the

percentage of the MAE with respect to the 37.9 kWh total usable battery capacity of

the EV BMW i3. CPE metric is given for better comparision of the error in MAE as

a proportion to the battery capacity. The results show that accf setting exposes better

results for the NHD and EMD metrics. On the other hand, with accc configuration,

the battery consumption errors MAE and CPE are improved.

Table 3.1: Error metrics for different acceleration configurations. It is shown that

with finer accelereation setup accf , more successful results are obtained.

Configuration NHD ↓ EMD ↓ MAE (kWh) ↓ CPE (%) ↓

acc_f 0.349 0.798 0.05 0.133

acc_c 0.477 0.923 0.04 0.106
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Finally, we present our simulation results with respect to the actual trips and traffic

average speeds. We demonstrate a sceneario from a trip that we selected from the 0th

driver class. We run 3 different simulations with the PHA models trained for the 0th,

1st, and 3rd driver classes. The experiments show that the PHA model trained for the

0th class better approximates the actual trip. This verifies our approach for modeling

different driver classes with different PHA models.
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Figure 3.3: Simulation results for driver class 0
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Figure 3.4: Simulation results for driver class 1
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Figure 3.5: Simulation results for driver class 2
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3.5 Discussion

In this section, we propose a data driven PHA model for driver simulation by con-

sidering the environment dynamics such as road types, and traffic speed. We use

historical driving data of 6 different driver classes to fit probabilistic acceleration

state changes of the drivers and represented those with the probabilistic edges of the

PHA. To represent the continuous aspects in driving such as speed and acceleration,

we utilize the continuos variables of PHA. We build 6 PHA models for each driver

class to distinguish between the different driving characteristics. We evaluated our

results based the errors in the acceleration histograms of trips and simulations, and

the energy consumptions using the EV model.

35



36



CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis, we proposed a peak-aware traffic prediction method, named pTGCN,

for deep learning models, and a novel driver simulation technique with Probabilistic

Hybrid Automaton.

We underlined that traffic prediction models must reveal accurate results during the

peak hours and pointed out evalutaion of the models might be misinterpreted due to

the imbalance problem in traffic data. Out method concentrates on making accurate

predictions on peak hours by signifying the values of the loss function for those pe-

riods during training with DTM weighting. Our approach also empowers to evaluate

the prediction quality during the peak hours in traffic.

Our driver simulation method with PHA outputs the speed of a vehicle along a trip.

Being a data driven model makes it able to reflect the real-life driver characteristics.

On the other hand, using a PHA as the method brings in a transparent model with

explainable state transitions. Our model also comprises the environmental factors in

traffic such as traffic speed and road type. The output of the model is then used to

estimate the energy consumption of a trip.

4.2 Future Work

We observed that, the prediction accuracy of the pTGCN model is decrased during

the off-peak hours. To prevent this, further optimizations on the loss function is found
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to be a possible solution. Another alternative approach to solve this problem will be

using an ensemble model to perform better on both peak and off-peak hours.

Since we have presented promising results with pTGCN model, we found it necessary

to apply DTM to different traffic datasets and also other time series prediction tasks

from different domains.

For some simulations with PHA model, we observed that unrealistic behaviour can

occur such as too high driving speeds. As a future work, reasons and results of this

unrealistic cases should be investigated. Also, the PHA model is open to further

advancements and extensive experiments with different discretization setups.
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